Chem. 540

Instructor: Nancy Makri

Angular Momentum - Problem 3

Consider the eigenstates of \hat{S}_z for a spin $\frac{1}{2}$ particle. In this basis, any spin state is specified by two coefficients, i.e., by a two-component vector. As usual, the vector representation of the two eigenstates themselves is simply the two vectors with coefficients 1, 0 and 0, 1 as discussed in class. Thus, in this basis the matrix representation of the operator \hat{S}_z is diagonal with elements $\frac{1}{2}\hbar$ and $-\frac{1}{2}\hbar$.

- (a) Use the spin ladder operators to show that the matrix representation of \hat{S}_x and \hat{S}_y is given by $\frac{1}{2}\hbar$ times the Pauli spin matrices introduced in class.
- (b) Calculate the commutators of the Pauli spin matrices.
- (c) Show that the three Pauli spin matrices plus the 2×2 identity matrix form a complete set. It is sufficient to show that any 2×2 matrix can be expanded in terms of those.