Chem. 540
Instructor: Nancy Makri

BASICS PROBLEM 5

Consider a particle moving on the $x y$ plane. Suppose that the motion of the particle on the plane can be described by a Hamiltonian

$$
\hat{H}=\hat{H}_{1}+\hat{H}_{2}
$$

where the operators \hat{H}_{1} and \hat{H}_{2} describe the motion of a particle in the x and in the y direction, respectively:

$$
\hat{H}_{1}=\frac{\hat{p}_{x}^{2}}{2 m}+V_{1}(\hat{x}), \quad \hat{H}_{2}=\frac{\hat{p}_{y}^{2}}{2 m}+V_{2}(\hat{y}) .
$$

Suppose we call $\phi_{n}(x)$ the eigenfunctions of \hat{H}_{1} with eigenvalues ε_{n} and $\psi_{k}(y)$ the eigenfunctions of \hat{H}_{2} with eigenvalues ξ_{k}. Show that the eigenfunction of the total Hamiltonian \hat{H} are products of the type

$$
\phi_{n}(x) \psi_{k}(y) .
$$

Find the corresponding eigenvalues.
Whenever the Hamiltonian can be decomposed into a sum of operators involving different coordinates, we say that it is separable, and as you see its solution is trivial in those cases. A separable Hamiltonian means that the motion of the particle in each coordinate is independent of the motion in the other coordinates. This is not the case in general; any potential field that depends simultaneously on x and on y would make the x motion coupled to the y motion; in that case, the eigenstates would no longer be expressible in product form.

