Chem. 540
Instructor: Nancy Makri

FORMALISM PROBLEM 11

Use the definition of the hermitian adjoint and the integral form of the bra-ket to show that
(a) $\left\langle\Psi_{1} \mid \hat{A} \Psi_{2}\right\rangle=\left\langle\Psi_{1}\right| \hat{A}\left|\Psi_{2}\right\rangle$ and
(b) $\left\langle\hat{A} \Psi_{1} \mid \Psi_{2}\right\rangle=\left\langle\Psi_{1} \mid \hat{A}^{\dagger} \Psi_{2}\right\rangle=\left\langle\Psi_{1}\right| \hat{A}^{\dagger}\left|\Psi_{2}\right\rangle$, or equivalently $\left\langle\Psi_{1}\right| \hat{A}\left|\Psi_{2}\right\rangle=\left\langle\hat{A}^{\dagger} \Psi_{1} \mid \Psi_{2}\right\rangle$.

These relations provide very useful rules for manipulating matrix elements of an operator, moving it into or out of the bra or ket.

