Chem. 540
Instructor: Nancy Makri

PROBLEM FORMALISM 14

Consider a system with exactly two eigenstates (e.g., an electron with spin $1 / 2$). We will denote the eigenstates of the Hamiltonian \hat{H}_{0} for this system as $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$ and the corresponding eigenvalues ε_{1} and ε_{2}. These states are orthogonal, because the Hamiltonian in a hermitian operator, and we assume that they are also normalized to 1 . Thus, the spectral expansion of \hat{H}_{0} is

$$
\hat{H}_{0}=\varepsilon_{1}\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|+\varepsilon_{2}\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right| .
$$

Now suppose that we apply an external field to this system, such that the Hamiltonian is changed to the new Hamiltonian \hat{H}, which in terms of the eigenstates of \hat{H}_{0} has the form

$$
\hat{H}=\hat{H}_{0}-\hbar \Omega\left(\left|\phi_{1}\right\rangle\left\langle\phi_{2}\right|+\left|\phi_{2}\right\rangle\left\langle\phi_{1}\right|\right)
$$

where $\Omega>0$ is a constant.
a) Find the two normalized eigenstates $\left|\Psi_{1}\right\rangle$ and $\left|\Psi_{2}\right\rangle$ of this new Hamiltonian and the corresponding eigenvalues. How many solutions are there for every value of Ω ? Is there a possibility for degeneracies?
b) Show explicitly that the eigenstates are orthogonal to one another and that they form a complete set; i.e., they are linearly independent, and any state in this two-dimensional space can be expressed as a linear combination of $\left|\Psi_{1}\right\rangle$ and $\left|\Psi_{2}\right\rangle$.
c) Write down the spectral expansion of \hat{H}.
d) What would happen if Ω were a complex number? (Don't try to solve the whole problem again. Just explain what this would mean physically and how the eigenstates and eigenvalues might be qualitatively different.)

