Chem. 540
Instructor: Nancy Makri

PROBLEM FORMALISM 4

Suppose that $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$ are two degenerate eigenstates of an operator \hat{A}, but they are not chosen to be orthogonal; however, they are normalized to unity. Let the overlap of these states be

$$
\left\langle\phi_{1} \mid \phi_{2}\right\rangle=\lambda \text { (real valued constant). }
$$

a) Construct new mutually orthogonal states $\left|\Phi_{1}\right\rangle$ and $\left|\Phi_{2}\right\rangle$ that correspond to the same eigenvalue of \hat{A}. There are many ways to do this, but perhaps the simplest is to keep $\left|\Phi_{1}\right\rangle$ as is and replace $\left|\Phi_{2}\right\rangle$ by its component that is orthogonal to $\left|\Phi_{1}\right\rangle$. To do this, subtract from $\left|\Phi_{2}\right\rangle$ its component along $\left|\Phi_{1}\right\rangle$. (You may write the coefficient of this component as a variable and determine its value by requiring zero overlap with $\left|\Phi_{1}\right\rangle$.)
b) Are $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$ orthogonal to other eigenstates $\left|\Phi_{n}\right\rangle, n>2$ of \hat{A} that have eigenvalues different from the eigenvalues of the two degenerate states? Are the new states $\left|\Phi_{1}\right\rangle$ and $\left|\Phi_{2}\right\rangle$ orthogonal to these other states?
c) Are the states $\left|\Phi_{1}\right\rangle$ and $\left|\Phi_{2}\right\rangle$ uniquely defined?

