Chem. 540 Instructor: Nancy Makri

PROBLEM FORMALISM 4

Suppose that $|\phi_1\rangle$ and $|\phi_2\rangle$ are two degenerate eigenstates of an operator \hat{A} , but they are not chosen to be orthogonal; however, they are normalized to unity. Let the overlap of these states be

 $\langle \phi_1 | \phi_2 \rangle = \lambda$ (real valued constant).

- a) Construct new mutually orthogonal states $|\Phi_1\rangle$ and $|\Phi_2\rangle$ that correspond to the same eigenvalue of \hat{A} . There are many ways to do this, but perhaps the simplest is to keep $|\Phi_1\rangle$ as is and replace $|\Phi_2\rangle$ by its component that is orthogonal to $|\Phi_1\rangle$. To do this, subtract from $|\Phi_2\rangle$ its component along $|\Phi_1\rangle$. (You may write the coefficient of this component as a variable and determine its value by requiring zero overlap with $|\Phi_1\rangle$.)
- b) Are $|\phi_1\rangle$ and $|\phi_2\rangle$ orthogonal to other eigenstates $|\Phi_n\rangle$, n > 2 of \hat{A} that have eigenvalues different from the eigenvalues of the two degenerate states? Are the new states $|\Phi_1\rangle$ and $|\Phi_2\rangle$ orthogonal to these other states?
- c) Are the states $|\Phi_1\rangle$ and $|\Phi_2\rangle$ uniquely defined?