Chem. 540
Instructor: Nancy Makri

Hydrogen Atom Problem 5

Consider two particles described by the 3-dimensional coordinate vectors $\mathbf{r}_{1}, \mathbf{r}_{2}$ in an arbitrary Cartesian coordinate system. Define the center-of-mass and relative coordinate vectors

$$
\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{M}, \quad \mathbf{r}=\mathbf{r}_{2}-\mathbf{r}_{1}
$$

where $M=m_{1}+m_{2}$ is the total mass. Show that the classical kinetic energy of the two-particle system,

$$
T=\frac{1}{2} m_{1}\left|\dot{\mathbf{r}}_{1}\right|^{2}+\frac{1}{2} m_{2}\left|\dot{\mathbf{r}}_{2}\right|^{2}
$$

(where the dot denotes the time derivative) takes the form

$$
T=\frac{1}{2} M|\dot{\mathbf{R}}|^{2}+\frac{1}{2} \mu|\dot{\mathbf{r}}|^{2},
$$

where

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

is the reduced mass. Thus, assuming that the interaction between the two particles depends only on the distance between them, conclude that the problem separates into a free-particle translational motion for the center-of-mass coordinate and the internal coordinate motion described by the Hamiltonian

$$
H=\frac{|\mathbf{p}|^{2}}{2 \mu}+V(r)
$$

Where \mathbf{p} is the momentum vector conjugate to the internal coordinate \mathbf{r}, i.e., $\mathbf{p}=\mu \dot{\mathbf{r}}$.
Finally, calculate the reduced mass for a nucleus+electron system (i.e., a hydrogen atom).

