Instructor: Nancy Makri

Models - Problem 2

The uncertainty Δx in the position of a particle is given by the root mean square deviation of the particle from its mean position; i.e.,

$$\Delta x = \left(\left\langle x^2 \right\rangle - \left\langle x \right\rangle^2 \right)^{\frac{1}{2}}.$$

Similarly, the uncertainty Δp in the momentum of a particle is given by the root mean square deviation of the particle from its mean momentum:

$$\Delta p = \left(\left\langle p^2 \right\rangle - \left\langle p \right\rangle^2 \right)^{\frac{1}{2}}$$

Consider again a particle in a one-dimensional square well of length L.

- a) Calculate $\langle x \rangle$ and $\langle x^2 \rangle$ for this system. Use your results to find the uncertainty Δx in position.
- b) Calculate $\langle p \rangle$ and $\langle p^2 \rangle$ for this system by using the form of the momentum operator in position space. Notice that there is another way to obtain $\langle p^2 \rangle$ in this case, using the relation between the square of the momentum and the total energy (which is known for every value of n). Use this observation to check your result.
- c) Use your results to find the uncertainty Δp in momentum and show that $\Delta x \Delta p \ge \hbar/2$ for all values of n, consistent with the uncertainty principle.