Solution for Problem 27

Chem 540
(1) The wavefunction for a particle in a box is

$$
\psi(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)
$$

Thus

$$
\langle x\rangle=\int \overline{\psi(x)} x \psi(x) d x=\frac{2}{L} \int_{0}^{L} x \sin ^{2}\left(\frac{n \pi x}{L}\right) d x=\frac{L}{2}
$$

and

$$
\left\langle x^{2}\right\rangle=\int \overline{\psi(x)} x^{2} \psi(x) d x=\frac{2}{L} \int_{0}^{L} x^{2} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x=\frac{L^{2}}{3}-\frac{L^{2}}{2 n^{2} \pi^{2}}
$$

For the last calculation the code is:

```
\[Psi][x_] := Assuming[n \[Element] Integers, Sqrt
    [2/L] Sin[n Pi x/L]]
Assuming[n \[Element] Integers, Integrate[x^2*\[Psi
    ][x]^2, {x, 0, L}]] // FullSimplify
```

(2) For the moments of momenta, we have:

$$
\begin{aligned}
\langle p\rangle & =\int_{0}^{L} \overline{\psi(x)}(-i \hbar) \partial_{x} \psi(x) d x= \\
& =-\frac{2 i \hbar}{L} \int_{0}^{L} d x \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right) \frac{n \pi}{L} \\
& =-\frac{i \hbar n \pi}{L^{2}} \int_{0}^{L} \sin \left(\frac{2 n \pi x}{L}\right) d x=0
\end{aligned}
$$

and

$$
\begin{aligned}
\langle p\rangle & =\int_{0}^{L} \overline{\psi(x)}(-i \hbar)^{2} \partial_{x, x} \psi(x) d x \\
& =+\frac{2 \hbar^{2}}{L}\left(\frac{n \pi}{L}\right)^{2} \int_{0}^{L} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x \\
& =+\frac{2 \hbar^{2}}{L}\left(\frac{n \pi}{L}\right)^{2} \frac{L}{2}=\frac{\hbar^{2} n^{2} \pi^{2}}{L^{2}}
\end{aligned}
$$

Inside the box, the potential is zero, so

$$
\frac{\hat{p}^{2}}{2 m} \psi(x)=E \psi(x)
$$

Therefore, we must have that

$$
\left\langle p^{2}\right\rangle=2 m\langle E\rangle
$$

But we know from solving the Schrodinger equation for this system that $E_{n}=n^{2} h^{2} / 8 m L^{2}=n^{2} \hbar^{2} \pi^{2} / 2 m L^{2}$. From the above relation, $\left\langle p^{2}\right\rangle=$ $n^{2} \hbar^{2} \pi^{2} / L^{2}$, precisely the value we obtained from explicit calculation of the second moment.
(3) The uncertainties in position and momentum are

$$
\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=L \sqrt{\frac{1}{12}-\frac{1}{2 n^{2} \pi^{2}}}
$$

and

$$
\Delta p=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}=\frac{n \hbar \pi}{L}
$$

respectively. Therefore their product is

$$
\begin{aligned}
\Delta x \Delta p & =n \hbar \pi \sqrt{\frac{1}{12}-\frac{1}{2 n^{2} \pi^{2}}} \\
& =\hbar \sqrt{\frac{n^{2} \pi^{2}}{12}-\frac{1}{2}}
\end{aligned}
$$

Observe that the quantity under the square root is an increasing function of the integer n, therefore, the smallest value of $\Delta x \Delta p$ will be attained when $n=1$:

$$
\min (\Delta x \Delta p)=\hbar \sqrt{\frac{\pi^{2}}{12}-\frac{1}{2}} \simeq 0.57 \hbar \geq \hbar / 2
$$

Therefore, $\Delta x \Delta p \geq \hbar / 2, \forall n \in \mathbb{N}$.

