Chem. 540
Nancy Makri

Dirac bra-ket notation

The symbol $|n\rangle$ (or $\left|\Psi_{n}\right\rangle$) is called a "ket" and denotes the state described by the wavefunction Ψ_{n}. The complex conjugate of the wavefunction, Ψ_{n}^{*}, is denoted by the "bra" $\langle n|$ (or $\left\langle\Psi_{n}\right|$). The ket denotes a state in the most abstract form, without reference to a particular representation.

When we put a bra together with a ket, with an operator in the middle, we imply integration over all space:

$$
\int d \mathbf{r} \Psi_{n}^{*}(\mathbf{r}) \hat{A} \Psi_{m}(\mathbf{r}) \equiv\left\langle\Psi_{n}\right| \hat{A}\left|\Psi_{m}\right\rangle \quad \text { or } \quad\langle n| \hat{A}|m\rangle
$$

Leaving out the operator implies the identity operator, i.e.,

$$
\left\langle\Psi_{m} \mid \Psi_{n}\right\rangle \equiv \int d \mathbf{r} \Psi_{m}^{*}(\mathbf{r}) \Psi_{n}(\mathbf{r})=\left\langle\Psi_{n} \mid \Psi_{m}\right\rangle^{*}
$$

$\left\langle\Psi_{m} \mid \Psi_{n}\right\rangle$ is the amplitude for a particle in state Ψ_{n} to be also in state Ψ_{m}. This is also known as the overlap of these two states.

In this notation, the condition for an operator to be hermitian is

$$
\left\langle\Psi_{m}\right| \hat{A}\left|\Psi_{n}\right\rangle=\left\langle\Psi_{n}\right| \hat{A}\left|\Psi_{m}\right\rangle^{*} .
$$

Remarks

$\left\langle\Phi_{n} \mid \Phi_{m}\right\rangle$ is a scalar (i.e., a number).
$\left|\Phi_{m}\right\rangle\left\langle\Phi_{n}\right|$ is an operator, because it can operate on $|\Psi\rangle$ to give

$$
\left(\left|\Phi_{m}\right\rangle\left\langle\Phi_{n}\right|\right)|\Psi\rangle=\alpha\left|\Phi_{m}\right\rangle, \quad \alpha=\left\langle\Phi_{n} \mid \Psi\right\rangle
$$

$\hat{P}_{n} \equiv\left|\Phi_{n}\right\rangle\left\langle\Phi_{n}\right|$ is a projection operator. It gives the component of a state along $\left|\Phi_{n}\right\rangle$.
The sum of all projection operators onto all states of an orthonormal complete set gives the identity operator.

Position and momentum states

$|x\rangle$ is the state of a particle located precisely at position x. Therefore, the momentum of the system is completely uncertain.
$|p\rangle$ is the state of a particle with momentum precisely equal to p. Therefore, the position of the particle is completely uncertain.
$\langle x \mid p\rangle$ is the amplitude for a particle in a state of precisely defined momentum p to be at position x. Since the position of such a particle is completely uncertain, the probability of finding the particle at x should be independent of x, i.e., any position is equally probable:

$$
|\langle x \mid p\rangle|^{2} \text { independent of } x
$$

Using similar arguments, the momentum of a particle in state $|x\rangle$ is completely uncertain, and thus we conclude

$$
|\langle p \mid x\rangle|^{2} \quad \text { independent of } p
$$

Therefore, since the above two probabilities are equal, it follows

$$
|\langle x \mid p\rangle|^{2}=\text { constant. }
$$

$|x\rangle$ is an eigenstate of the position operator with eigenvalue x. This is so because any measurement of the position of the particle in state $|x\rangle$ should yield the result x. Thus,

$$
\hat{x}|x\rangle=x|x\rangle
$$

Similarly, $|p\rangle$ is an eigenstate of the momentum operator with eigenvalue p :

$$
\hat{p}|p\rangle=p|p\rangle
$$

$\left\langle x \mid \Psi_{n}\right\rangle$ is the amplitude that a particle in state $\left|\Psi_{n}\right\rangle$ will be found at position x. Therefore,

$$
\left\langle x \mid \Psi_{n}\right\rangle \equiv \Psi_{n}(x)
$$

The normalization condition becomes $\int d x\left|\left\langle x \mid \Psi_{n}\right\rangle\right|^{2}=1$

Note that since $|\langle x \mid p\rangle|^{2}=$ constant., the wavefunctions for momentum states cannot be normalized to 1.

The two-slit experiment in Dirac notation

$|s\rangle \equiv$ state of the electron as it leaves the source (beam)
$\langle k \mid s\rangle=$ amplitude for an electron in state $|s\rangle$ to go through hole k.
$\langle x \mid k\rangle=$ amplitude for an electron coming out of hole k to end up at x.
Since we are summing amplitudes,

$$
\langle x \mid s\rangle=\langle x \mid 1\rangle\langle 1 \mid s\rangle+\langle x \mid 2\rangle\langle 2 \mid s\rangle .
$$

Note: the object $|1\rangle\langle 1|+|2\rangle\langle 2|$ plays the role of the identity operator.
$|k\rangle\langle k|$ is a projection operator that projects on the state of hole k.

