Chem. 540 Nancy Makri

Dirac bra-ket notation

The symbol $|n\rangle$ (or $|\Psi_n\rangle$) is called a "ket" and denotes the state described by the wavefunction Ψ_n . The complex conjugate of the wavefunction, Ψ_n^* , is denoted by the "bra" $\langle n |$ (or $\langle \Psi_n |$). The ket denotes a state in the most abstract form, without reference to a particular representation.

When we put a bra together with a ket, with an operator in the middle, we imply integration over all space:

$$\int d\mathbf{r} \,\Psi_n^*(\mathbf{r}) \hat{A} \,\Psi_m(\mathbf{r}) \equiv \left\langle \Psi_n \left| \hat{A} \right| \Psi_m \right\rangle \quad \text{or} \quad \left\langle n \left| \hat{A} \right| m \right\rangle$$

Leaving out the operator implies the identity operator, i.e.,

$$\langle \Psi_m | \Psi_n \rangle \equiv \int d\mathbf{r} \, \Psi_m^*(\mathbf{r}) \Psi_n(\mathbf{r}) = \langle \Psi_n | \Psi_m \rangle^*$$

 $\langle \Psi_m | \Psi_n \rangle$ is the amplitude for a particle in state Ψ_n to be also in state Ψ_m . This is also known as the overlap of these two states.

In this notation, the condition for an operator to be hermitian is

$$\left\langle \Psi_{m}\left|\hat{A}\right|\Psi_{n}\right\rangle = \left\langle \Psi_{n}\left|\hat{A}\right|\Psi_{m}\right\rangle^{*}.$$

Remarks

 $\langle \Phi_n | \Phi_m \rangle$ is a scalar (i.e., a number).

 $|\Phi_m
angle\langle\Phi_n|~$ is an operator, because it can operate on $|\Psi
angle~$ to give

$$(|\Phi_m\rangle\langle\Phi_n|)|\Psi\rangle = \alpha |\Phi_m\rangle, \qquad \alpha = \langle\Phi_n|\Psi\rangle$$

 $\hat{P}_n \equiv |\Phi_n\rangle \langle \Phi_n|$ is a projection operator. It gives the component of a state along $|\Phi_n\rangle$.

The sum of all projection operators onto all states of an orthonormal complete set gives the identity operator.

Position and momentum states

 $|x\rangle$ is the state of a particle located precisely at position *x*. Therefore, the momentum of the system is completely uncertain.

 $|p\rangle$ is the state of a particle with momentum precisely equal to p. Therefore, the position of the particle is completely uncertain.

 $\langle x|p \rangle$ is the amplitude for a particle in a state of precisely defined momentum *p* to be at position *x*. Since the position of such a particle is completely uncertain, the probability of finding the particle at *x* should be independent of *x*, i.e., any position is equally probable:

$$|\langle x|p\rangle|^2$$
 independent of *x*.

Using similar arguments, the momentum of a particle in state $|x\rangle$ is completely uncertain, and thus we conclude

$$|\langle p|x\rangle|^2$$
 independent of p.

Therefore, since the above two probabilities are equal, it follows

$$\left|\left\langle x \mid p \right\rangle\right|^2 = \text{constant.}$$

 $|x\rangle$ is an eigenstate of the position operator with eigenvalue x. This is so because any measurement of the position of the particle in state $|x\rangle$ should yield the result x. Thus,

$$\hat{x}|x\rangle = x|x\rangle$$

Similarly, $|p\rangle$ is an eigenstate of the momentum operator with eigenvalue p:

$$\hat{p}|p\rangle = p|p\rangle$$

 $\langle x | \Psi_n \rangle$ is the amplitude that a particle in state $| \Psi_n \rangle$ will be found at position x. Therefore,

$$\langle x | \Psi_n \rangle \equiv \Psi_n(x)$$

The normalization condition becomes $\int dx |\langle x | \Psi_n \rangle|^2 = 1$

Note that since $|\langle x|p \rangle|^2$ = constant., the wavefunctions for momentum states cannot be normalized to 1.

The two-slit experiment in Dirac notation

- $|s\rangle =$ state of the electron as it leaves the source (beam)
- $\langle k | s \rangle$ = amplitude for an electron in state $| s \rangle$ to go through hole *k*.
- $\langle x | k \rangle$ = amplitude for an electron coming out of hole *k* to end up at *x*.

Since we are summing amplitudes,

$$\langle x|s \rangle = \langle x|1 \rangle \langle 1|s \rangle + \langle x|2 \rangle \langle 2|s \rangle$$

Note: the object $|1\rangle\langle 1|+|2\rangle\langle 2|$ plays the role of the identity operator.

 $|k\rangle\langle k|$ is a projection operator that projects on the state of hole k.