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Postulates of Quantum Mechanics 

 

 

1.     Wavefunction 

 

The state of a system is described by a vector in a Hilbert space.  The state of a system 

can be fully specified by its wavefunction in position space,  ( ; )t r , or by its wavefunction in 

momentum space,  ( ; )t p etc. 

 

The probability of finding the particle within a volume dr   around point r  is equal to  
2

( ) d r r . 

 

In order for the probability of finding the particle anywhere to be equal to unity, we 

require wavefunctions to be normalized: 

 
2

( ) 1d   r r . 

 

Hilbert space is a vector space (over complex-valued vectors) of up to infinite dimension, which 

is complete, and in which the inner product * u v  is finite.  



2.   Operators 

 

States are transformed by linear operators:   

 

1 2 1 2
ˆ ˆ ˆ( )A A A          . 

 

The commutator of two operators ˆ ˆ,A B  is defined as  

 
ˆ ˆ ˆˆ ˆ ˆ[ , ]A B AB BA  . 

 

If the commutator of two operators is equal to zero we say that the operators commute.  This is 

not always the case. 

 

    To every physical observable corresponds a Hermitian operator. An operator Â  is called 

Hermitian if  

 

 1 2 2 1
ˆ ˆ( ) ( ) ( ) ( )d A d A


      r r r r r r  

 

for any two wavefunctions 1 2,  . 

 

 

 

 

 

 

3.    Uncertainty principle 

The momentum operator is a vector with components  ˆ
xp i

x




  , etc. 

 

Therefore the operators for position and momentum satisfy the commutation relation 

 

 ˆ ˆ ˆˆ ˆ ˆ, x x xx p xp p x i   . 

 

This implies that it is not possible to determine simultaneously the position and momentum of a 

particle to precision better than Planck’s constant: 

 

/ 2xp x   . 

 

 



4. Measurement 

 

A given physical observable can take only certain values, which are the eigenvalues of 

the corresponding quantum mechanical operator. 

 

Eigenvalue equation:     ˆ
n n nA A    

 

The eigenstates of a hermitian operator form a complete set; i.e., if   n  are all the 

eigenstates of an operator Â ,  then any other state in the same space can be expanded uniquely in 

terms of  n , i.e.,  

 

n n

n

c    

 

where nc  are complex numbers. 

 

The eigenvalues nA  of hermitian opertors are real valued, and the eigenstates n  are 

mutually orthogonal.  Orthogonality is a condition on the “overlap integral” between two 

functions,  

 

( ) ( )nm n mS d    r r r . 

 

If this overlap is zero, we say that the states ,n m   are orthogonal to each other.   In other 

words, the eigenstates of hermitian operators satisfy the relation  

 

( ) ( )n m nmd    r r r , 

 

where  nm   is the Kronecker delta: 

 

1   if

0  otherwise
nm

n m



 


 

 

This postulate states that when the wavefunction   is an eigenfunction of the operator 

Â  corresponding to the observable of interest, the determination of A always yields one result, 

the corresponding eigenvalue nA  of Â .  Note that the state of the system changes to n  as a 

result of this measurement.   When   is not an eigenfunction of Â , a single measurement of A 

yields a single result which is one of the eigenvalues of Â ; the probability that a particular 

eigenvalue nA  is measured is equal to
2| |nc , where nc  is the coefficient of the eigenfunction n  

in the expansion of the wavefunction . 

 

 



5. Time evolution 

 

 The time evolution of states satisfies the linear partial differential equation 

 

ˆ( ) ( )i t H t
t


  


 

 

where Ĥ  is the operator that corresponds to the energy of the system.  Thus, usually (in 

Cartesian coordinates, assuming no magnetic fields are present) Ĥ  has the form  

 
2ˆˆ ˆ

2

p
H V

m
  . 

 

Ĥ  is called the Hamiltonian operator, and the differential equation is called the time-dependent 

Schrödinger equation. 


